IEEE 802.21 MEDIA INDEPENDENT HANOVER
DCN: 21- xxxx-01
Title: CMCC Wireless Mesh Trial Network Introduction
Date Submitted: May 10, 2010
Presented to Heterogeneous Wireless Networks Mgmt. SG at IEEE 802.21 session #38 in Bangalore
Authors or Source(s):
Vasilios Siris (FORTH, Greece)
Walter Buga, Krzysztof Grochla (Proximetry, Poland/USA)
Abstract: Brief introduction of EU-MESH

IEEE 802.21 presentation release statements
This document has been prepared to assist the IEEE 802.21 Working Group. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.21.

Introduction

• EU-MESH: Enhanced, Ubiquitous, and Dependable Broadband Access using MESH Networks

• EU-MESH (FP7 ICT, project no. 215320) is a 30 month collaborative project which started January 2008, and is funded by the European Commission under Call 1 of ICT (Information and Communication Technologies) in FP7 (7th Framework Programme), targeting the objective “The Network of the Future” of Challenge 1: Pervasive and trusted network and service infrastructures.

• EU-MESH's goal is to develop, evaluate, and trial a system of software modules for building dependable multi-radio multi-channel mesh networks with QoS support that provide ubiquitous and ultra-high speed broadband access.

• Web site: http://www.eu-mesh.eu
The EU-MESH Consortium

1. Foundation for Research and Technology – Hellas (FORTH), GR: **Coordinator**
2. National Research Council (CNR), IT
3. Technical University Berlin, DE
4. SUPSI, CH
5. Budapest University of Technology & Economics (BME), HU
 - SME, wireless mgmt software
6. Proximetry Poland, PL
 - Systems integrator/manufacturer
7. Thales, FR
8. Hellenic Telecommunications and Telematic Applications Company (FORTHnet), GR
9. Ozone, FR

EU-MESH Data Plane Architecture
Architecture model of the node

Cross layer Architecture

EU-MESH cross layer architecture is based upon Proximity AirSync platform
Project Objectives

Project Objective #1
Channel Assignment
Access, channel & power control algorithms for interference reduction

Project Objective #2
Routing
QoS and opportunistic routing algorithms

Project Objective #3
Auto-Configuration
Location-aware automated (re)configuration procedures

Project Objective #4
Mobility
Procedures for seamless mobility

Project Objective #5
Security
Secure routing and handover; intrusion detection and mitigation

Experiments

- Flow splitting experiment
- Channel assignment in metropolitan network
- Anomaly-based intrusion detection
- Hybrid Channel Access for Interference Mitigation in WLANs
- Route and Gateway Selection
- Rate Adaptation Experiment
- Coverage area approximation using mobile users
- Fast Client Authentication
- Secure (multi-path transport) Routing
- Seamless Vertical handover (including WiFi and WiMAX)
Channel access functions in EU-MESH nodes

- Auto-configuration
- Channel assignment
- Seamless handover optimization
- Seamless horizontal handover
- Secure routing
- Gateway Aggregation

Trails
OZONE’s networks for trials

Zone 1, Paris city center, 12 Lampposts deployed, backhaul through Wireless links.
OZONE/Proximetry wifi mesh network (Centre Pompidou, Paris)

Forthnet’s networks for trials

Forthnet MESH Network at Heraklion Network operational model
Trails deployment details

<table>
<thead>
<tr>
<th>Components</th>
<th>TRIALS</th>
<th>OBJECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>OZONE's museum network</td>
<td>Mikrotik S32 Routerboard, CM9 Wifi Cards, Dual Band Omni-antennas</td>
<td>Emphasize the proof of concept of the solution within a fully operated network. (TRIAL A.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Demonstrating that the functionality of the routing with the security extension proposed in [Eu-Mesh D5.1] has the same level as without security extension (TRIAL A.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indoor network are subject of many unpredictable interferences. This will stress the need of efficient channel assignment to improve the network performances. (TRIAL A.2)</td>
</tr>
<tr>
<td>OZONE's lampposts network</td>
<td>Mikrotik S32 Routerboard, CM9 Wifi Cards, Dual Band Omni-antennas</td>
<td>Investigation of seamless handover with cross-layer mechanisms (TRIAL A.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optimization of seamless handover based on WOptMo improvements (TRIAL A.4)</td>
</tr>
<tr>
<td>Forthnet's ADSL network</td>
<td>ADSL modem (Thomson ST 536 v6 PSTN), Multi-radio mesh router (mini-ITX GW2358-4)</td>
<td>Evaluation of performance gains of channel assignment under real conditions in an operated outdoor network. (TRIAL B.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aggregation (TRIAL B.2)</td>
</tr>
</tbody>
</table>

Future Contributions

- EU-MESH trails and experiments will be completed by end of June 2010
- EU-MESH is planning to submit contributions to IEEE 802.21 meeting in July 2010, in San Diego, addressing the following:
 - Use cases
 - Lessons learned with heterogeneous mesh networks
 - Recommendations

Please contact Walter Buga (Proximetry) with question and suggestions at wbuga@proximetry.com